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This work reports on a study concerning the behaviour of an elastic system subject to a periodic external
excitation. Oscillatory movement is the most common type of mechanical movement found in nature and,
of course, in technique. A system executing simple harmonic motion is called harmonic oscillator system. If
the harmonic oscillator motion describes a path as the straight line, the harmonic oscillator is called linear
harmonic oscillator. Such linear harmonic oscillator is considered an elastic system when the force acts upon
itis an elastic one. If in the elastic system dissipative forces are involved then they have the effect of energy
losses during oscillation, so that, after a while, the oscillator energy is lost in various forms. To compensate
the energy losses of dissipative forces, the oscillator must be driven by a periodic external disturbing force
that produces forced oscillations in the elastic systems. If external disturbing force is periodical, the oscillator
will run a new type of oscillations called forced oscillations. In this case the period and frequency of forced
oscillations of the elastic system will be the same as the period and frequency of disturbing force. In this
situation there is a transfer of energy between the two systems. Studying forced vibrations, in terms of
energy intake, through excitation forces, are overrun highlight the importance of phase shift between force

and oscillator movement.
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resonance phenomenon.

It is known that an elastic system subject to a periodic
external excitations makes forced vibrations by the same
pulse with external disturbance and with a certain phase
difference shift and amplitude depending on the system
and excitation characteristics. When their own vibration
pulsations is equal with the periodic pulse excitation, or an
integer multiple thereof, forced vibrations amplitude
increase indefinitely over time, producing a phenomenon
known as resonance [1].

The resonance phenomenon can be seen, also, under
energy aspect. Elastic system, driven by disturbing forces
will be in resonance, unless disturbing force introduces
energy into the system; increasing the amplitude of the
oscillations can be attributed to elastic system when the
excitation energy is transfered to the system.

Experimental part
The interaction of disturbing periodical forces with elastic
systems. The elastic system with dumping

We consider, first, the simple case of a linear harmonic
oscillator with no damping, free vibration moving, having
the own vibrations pulsing described in equation 1, as
shown below [2]:

X=X cos @t (D
and an excitation force with @, pulse harmonic variation
and ¢ phase given by the relation number 2:

F=F cos(ot+¢) 2

If the force F(t) will interact with the given oscillating
system, mechanical work done by force is a measure of
the energy transmitted to the system. Depending on this,
we can assess whether vibration is amplified or not in time.
Mechanical work done by force F(t) or variance of the
mechanical energy of the oscillator, over a period of time,
will be:
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W= F@ydi = IF(!)%: =-an,F, [ cos(ot + p)sinords =
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j: {sin[(co, — o)t + p]—sinf(o, + o)t + @]}dt

For the case when oscillator pulse is the same with the
disturbing pulse (wl = we obtain:

w = Pk {t sing + —1"[005(2“” +@) = cos ¢]} @
2 20

Note that, in this case, there is a continuous transfer of
energy to the system. This means continuous growth of
mechanical energy of the system and, related to this, the
continuous growth of oscillation amplitudes. Is the simplest
case of resonance of the harmonic oscillator driven by a
harmonic perturbation of the same pulsation with it [3].
Increasing energy systemin a time T = 27t/ o is obtained
from the relation 4 making t = 2n/ ® and results the
following expression:

W= zF,x,sing ®)

We observe after equation 5 that the communicated
energy is a function of ¢ phase shift between vibration and
disturbing force F. We can remark this in the graph from
figure 1 below:

W

Fig. 1. Harmonic
oscillator driven by a
harmonic perturbation
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Maximum energy that can be transmitted in a period
corresponds of ¢ = 7t/ 2 pase shift and is given by formula
6, showing that [4]:

W =7 Fyx, (6)

max

-—

Fig. 2. Harmonic oscillator driven by a harmonic perturbation

For phase shift ¢ = 0, or ¢ = w, communicated energy
is zero and therefore the force, in phase or in phase
opposition with the movement, can not transmit energy to
the system although the force pulses and oscillating
system pulses are the same. We see, after equation 5 that,
in fact, for all negative values of sin @ (n <@p<2m)Wisa
negative energy, that energy transfer is from the vibrant
system to outside.

As a conclusion, we can communicate mechanical
energy to the oscillating system only with forces in advance
of moving, with 0 < ¢ < & angle.

Now, consider the case ,=nw (n=1,2,3...), meaning
the excitation pulse is an mteger multlple of ® pulsation.
Acc?rdmg to equation 3, corresponding to a time t =27/,
we find:

2z

W= @;—FO E {sin[(n — Dt + p]-sin[(n + )t + @)}t =

Therefore, such an excitation can not continuously
transmit energy to the systern, that under these conditions
resonance can not occur.

Results and discussions
In a general case, when free vibration pulsation is totally
different from the w excitation pulsation, the mechanical
\fNOl‘k done by force ﬁ(t) is obtained by the relation 3 in this
orm:

We can put expression 7 in the following form:

F,
w = 2% 1 _+ 1 __2¢
2 (o, +@)" (0 -0) o -

2cos2mt
2

cos[(w, +w)t+ o —y] 8)
where:
sin 2et
v =arctg
@
cos2wt —
w, +w
In figure 3 is represented the variation W = W (t) and
we can see that the energy exchange oscillates in a quasi-
harmonical way around a mean value of the form:
2
w
Wm = E)xo WCOS¢7 (9)

-

The oscillation of the exchanged energy is harmonic
modulated in amplitude, modulation pulsation being the
double of the free vibration pulsation.

Fig. 3. Quasi-armonic oscillation of energy exchange

The energy accumulated by the oscillator, on account
of mechanical work done by the excitation force,
periodically varies between two finite limits whose size is
a function of the difference between w and o, pulsations.
For o =o, the energy transmitted by the excitation
oscillator at a time increases indefinitely, this is the classical
resonance case. We admit, further, a periodic force F(t)
and a linear harmonic oscillator as before. We assume
that the F(t) function satisfies Dirichlet’s conditions and
can be decomposed in Fourier series as follows below:

F(t)=4, + Z(An cosnat + B, sinnat)
n=l1

where:

o- F(t) force pulsation,

A, A, B. - coefficients that are determined

y Euler’s method;

n - integer values of natural numbers.

If the vibrations of the harmonic oscillator are: x = x_
CoS ((o t=@), then the mechanical work done by exterior
force, ina period of time t, is given by the formula:

dx .
W= [F(t)Edt =-,x, I F(t)sin(at + @)dt =

==X, _{[AO + Z (4, cosnat + B, sin nawt)]sin{w,t + @)dt =
n=1

wFyx, wFyx,
=——Cos|(w, +w)l |+ @ ——————cos|(w, —w)t]
2w, + ) (o, 1+ 2o, - ) [(e )]
el ™
4, d 4,
=x,0,1 —cos(@f+@Q)+ ) ————
0 1{ o, (@t +9) nz: 2nw+ o)
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We observe, by the obtained formula, for ®, =nw, the
average value of W energy communicated to thé oscillator
in a period of time is unlimited. Here we are, in this case, a
well-known fact too, namely that the oscillator resonance
can occur with each periodic excitation harmonics (the
fundamental one and higher ones). For o, =Nno, if we set
aside the terms corresponding harmonics witha pulsatlon
different from pulsation of the free vibration, we obtain:

A x
w =% {t sing — L [cos(Rayt + @) —cos go]}
2 2w

1

B
0% tcosp — L [sin(2et + @) — sin @]
2 20,

1

W energy, corresponding to this case, contains the first
and third term as linear functions of time, marking a
continuous transfer of energy from the external to the
oscillator.

Fort = 2n/ w,, we obtain:

W =—r-x,(4,sinp+ B, cose)

The maximum transmitted energy corresponds to a
phase shift of type:

IfF(t) is an even function, so that its series development
contains only cosine terms, we have for W, corresponding
to a period of time, the following expression:

W=-m-x,4,sing

For @ =37/ 2 we obtain a maximum of transmitted
energy and for 0 < ¢ < = the energy is not transmitted.

Further consider two particular cases of periodical
forces. In the first case we have:

- the force variation embattled shaped, as shown in the
graph from figure 4 below:

Fig. 4. The F force variation in the form of loophole

In this case, force decomposition in Fourier series is:

4F (sin wt
+

Foy=2E sin 3wt + sin Sat + )
V1

] 3 5 T
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In the second case:
- force with a variation in tooth form, as shown in the
graph from figure 5 below:

Ff

Fig. 5. The F force variation in the form of tooth

In this case, force decomposition in Fourier series in:

Ft—— + + +
® 1 2 3 4 5

F F(sina)t sin2mt sin3wt  sin4ot
T

sin Sot j
+

According to those shown earlier, to achieve an energy
transfer to a linear harmonic oscillator the first type force,
should have its pulsation equal with it or an even and integer
sub-multiple of it and the phase shift will be out of and =
/2 and 3/ 2 limits.

For the second case of force (saw teeth) energy transfer
is accomplished in the same manner as in the previous
case, except that pulsation force must be equal or an integer
sub-multiple (odd or even) of the pulse oscillator. Optimal
phase shift, for both cases, is @ = 0. In the sinusoidal
shape variation force, the graph will look as in figure 6
below:

Fit)

Fig. 6. F variation force in sinusoidal pulse form

In this case, force decomposition in Fourier series is:
F F [sina}t sin2at  sin3et sindot sinSor N )

F(t)~— + + +—t......
z\ 1 2 3 4 5

For these forces we have energy transfer to the oscillator
in two cases:

- when pulse force coincides with the pulse oscillator
and phase shift is out of the (/2 .... 3n/2) limits;

-when pulse force is an even integer sub-multiple of the
pulse oscillator having a phase shift between (x ... 2r)
limits.
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Conclusions

In this work we analyzed the interaction between an
exciter force and a linear harmonic oscillator assuming
the absence of any dissipation and losses of energy. We
admited that the mechanical work done by periodic
external force is converted entirely into mechanical energy
taken by the oscillator. To determine, as before, the external
conditions in which energy can be transferred to the
oscillator through the excitation force we will have to
consider the mechanical work done by the dissipative
(damping) forces. Only the difference between the
mechanical work done by the external forces and the
mechanical work done by the dissipative forces can be
considered in this case a measure of the mechanical
energy transmitted to the system. Studying force vibrations,
in terms of energy intake, through excitation forces, we
show the importance of phase shift between force and
oscillator movement. We highlight thus unable energy
transfer for some phase shift and, also, the optimal phase
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shift in terms of energy transfer.
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